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Abstract. While Interactive Evolutionary Computation (IEC) is starting to
penetrate a larger scientific community, only few researchers have applied IEC
to the design of complicated artifacts like machines or transportation systems.
The present paper introduces a specific approach to Interactive Evolutionary
Computation that breaches the two historical categories of user-defined fitness
and selection in each generation (narrow) and occasional user-intervention of an
automated evolutionary process to correct the fitness function used for (multi-
objective) optimization (broad). To highlight the approach, a real world aircraft
design problem is employed that demonstrates the relevance and importance of
both features for an effective design process.

1   Introduction

Interactive Evolutionary Computation (IEC) has started to capture the fascination of
researches from fields as diverse as art, architecture, data mining, geophysics,
medicine, psychology, robotics, and sociology. Takagi outlined many of these
applications in his overview paper [1]. However, to this day only very few researchers
have applied IEC to the problem of engineering and design of complicated artifacts.
While the main reason for the slow pace of adoption in engineering is mostly open for
speculation, it is partially a result of the field’s reluctance to accept new methods, like
Genetic Algorithms, as well as the field’s already heavy reliance on automated
optimization processes that leave decidedly little room for subjectivity. Among the
few that did apply IEC to engineering design, Parmee has to be given the adequate
credibility for his research. [2], [3]

However, without notable exception, all research currently done in applying IEC to
engineering design seems to belong to the category of broad-IEC. Takagi introduced
this term in [1], separating the applications of IEC into two categories, broad and
narrow, based on the type of interaction the human has with the evolutionary process.
According to that definition, a narrow-IEC uses the human input as the fitness
measure for a population member, while the broad-IEC utilizes a numerical fitness
value in conjunction with an interface through which the human can guide or interact
with the evolutionary process. That means, the broad-IEC can accommodate systems
for which we already have a numerical fitness measure, and take advantage of the
interactive capability to benefit the optimization procedure. On the other hand,

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.2     Für schnelle Web-Anzeige optimieren: Nein     Piktogramme einbetten: Nein     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 2400 2400 ] dpi     Papierformat: [ 595 842 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Durchschnittliche Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Durchschnittliche Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Durchschnittliche Neuberechnung     Downsample-Auflösung: 1800 dpi     Downsampling für Bilder über: 2700 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: NeinSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Farbe nicht ändern     Methode: StandardGeräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Ja     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: Ja     DSC-Warnungen protokollieren: Nein     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja     EPS-Info von DSC beibehalten: Ja     OPI-Kommentare beibehalten: Nein     Dokumentinfo von DSC beibehalten: JaANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments true     /DoThumbnails false     /CompressPages false     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize false     /ParseDSCCommentsForDocInfo true     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Average     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Average     /DetectBlends true     /GrayImageDownsampleType /Average     /PreserveEPSInfo true     /GrayACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ColorACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /LeaveColorUnchanged     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 300     /EndPage -1     /AutoPositionEPSFiles true     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 1800     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 300     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 2400 2400 ]>> setpagedevice



884 O. Bandte and S. Malinchik

narrow-IEC can be utilized for systems that do not provide a numerical fitness
measure, and rather rely on the (subjective) judgment of a human individual or group.

Accordingly, the aforementioned strong reliance on numerical evaluation in
engineering design, see [4], [5], [6], [7], resulted in research efforts focusing on
broad-IEC techniques. For example, Parmee introduced an Interactive Evolutionary
Design System that enables designer interaction after a certain number of generations,
presenting the current population and allowing for a redirection of the search through
a change in preferences for multiple objectives. [2], [3] All fitness evaluations are
performed internal to the evolutionary process, utilizing an analysis tool that
calculates multiple system performance values, i.e. objectives, as well as the
preference information supplied (interactively) by the designers.

While the reliance of engineers on analysis tools requires interactive evolutionary
techniques to utilizes them in the fitness generation, it is also true that many design
decisions in practice are made through gut feel and intuition rather then analysis.
Recognizing that fact, this paper identifies an IEC approach to design that can be
called broad and narrow, allowing for automatic fitness calculation through analysis
as well as selection and fitness assignment by the human designers directly.

2   Proposed Process

The approach proposed in this paper is intended to be comprehensive with regard to
the implementation into an actual engineering design process. Hence, a process,
outlined in Figure 1, was established first that identifies ten steps from problem set-up
to deciding on a final design.
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Fig. 1. Integrated Interactive Evolutionary Design Process

Step 1 – Define Problem
As in any design problem, the first step is to define the independent parameters,
objectives and constraints, as well as evaluation functions that describe the objectives’
dependencies on the independent variables. Additionally, for this interactive
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evolutionary design environment this step identifies the genotype representation of a
design alternative, the fitness evaluation function, influenced by the objectives, and
how to handle design alternatives that violate constraints.

For many design problems the fitness of a solution is based on the satisfaction of
multiple objectives. In such cases, a wide variety of approaches to fitness assignment
and selection can be employed for this interactive evolutionary design process.
Naturally, such established MOGA methods as Goldberg’s Pareto ranking [8] or the
utility function method with weights representing the relative preferences for the
objectives [9] lend themselves as immediate choices. However, without presenting
proof here, such techniques as Branke’s Focused Pareto Frontiers [10], Deb’s Goal
Programming adaptation [11], Parmee’s Fuzzy Preferences [2,3], or even currently
un-proposed uses of TOPSIS [12], LINMAP [13], and MinMax/MaxMin could
present a useful solution to the well-known shortcomings of the established methods.

Related to the problem of selecting a fitness assignment approach is the issue of
proper treatment of problem constraints. While solutions with good fitness values are
desired, they cannot be considered a final solution, as long as they violate the
identified constraints. However, in order to enhance the speed with which the genetic
algorithm can find good feasible solutions, it may be beneficial to allow for a certain
level of infeasibility in other population members. Again, without going into details
here, such ideas as inclusion of constraints in the fitness function, fitness discounting
or repairing of infeasible alternatives, flat out rejecting infeasible solutions, or
treatment of the constraints as objectives in one of the Multi Objective Optimization
techniques have been proposed in the past. [14]

Step 2 – Check for Feasibility
The next step entails a check for sufficient feasible design space to search for an
interesting optimal solution. While different techniques can be employed here, the
simplest approach is to test a large random sample of design variable values,
generated from uniform distributions, and to count the number of times constraints
were violated. If less then 10% of the sample satisfies all constraints, an effort should
be made first to relax the constraints or introduce new technologies to the system,
altering the dependency of the constraint functions on the design variable settings. If
neither is possible, an interactive evolutionary approach might simply be too
expensive for evaluating a small set of possible solutions.

Step 3 – Provide Input
This step represents the central interaction point of the designers with the
environment. Here they process the information displayed and communicate
preferences for objectives, features of interest in particular designs, whether specific
design variable values should be held constant in future iterations, what parameter
setting the GA should run with in the next iteration (e.g. a condition that identifies the
end of the GA iteration), or whether specific design alternatives should serve as
parents for the next generation.

The difficulty in implementing this step is identifying what information to display
and how, so that the designers can easily process it. For example, a general area of
research that will benefit this step is the display of multi-dimensional data. Since part
of the information conveyed to the designers is data for the objective functions and
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design variables, it is guaranteed to be multi-dimensional (higher than three!), for
which data visualization is not straightforward.

After analyzing the displayed information, giving feedback is the next critical
element in which the designers exert their influence on the optimization process
through parent selection for the GA, objective preferences for the automated
alternative evaluation procedure, or guiding the search for a design with specific
features. Unfortunately from a scientific perspective, what feedback is deemed
relevant is highly project and designer experience specific, so that no further
guidelines can be given at this point. Hopefully experience gained from future work
will yield some insights into some must-haves and must-avoids.

Finally, most actual engineering design work is done by a team of designers (or
experts representing different disciplines) rather then one person, hence the issue of
differing or opposing opinions among experts/designers needs to be addressed in
order for any interactive process to be implemented. Again without proof, several
voting and scoring approaches (see Hwang [15]) can be used to accommodate the
different opinions and provide a fair framework to generate a collective group
opinion.

Step 4 – Generate New Population
Utilizing the information provided by the designers previously, this step simply
generates a new population of alternatives. Here the selection of appropriate variation
operators (mutation, crossover, weighted average, permutation, or representation
specific) becomes important to guarantee the efficiency of the process.

Step 5 – Evaluate Each Population Member
Next, a numerical analysis is employed to distinguish the different designs in the
population by their objective and constraint values. In order to provide direct and
immediate information to the designers, an integrated analysis tool is critical to the
success of any “broad” interactive evolutionary design process. Having to wait for a
lengthy period of time, just to see the result of a particular action the designers took,
would clearly interrupt the dynamic of an interactive environment. While most
complex engineering design projects inherently provide such analysis, some of these
tools can be very time consuming (e.g. Finite Element Analysis). In many of these
cases metamodel analysis (see Mavris [16]) is recommended to facilitate a speedy
evaluation during the interactive process, allowing for detailed optimization with the
original analysis tool at a later time.

Step 6 – Identify Interesting Population Members
While guaranteeing an efficient search with a genetic algorithm requires a large
population size, it seems impractical and unnecessary to subject the designers to the
entire (large) population, including the highly dominated alternatives. It is therefore
proposed to down-select the population to a more manageable group of interesting
solutions. For example, such set of solutions could be the Pareto frontier itself, or
alternatives dominated by at most one other population member.
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Step 7 – Condition Satisfied
This step simply tests whether the designer-specified condition for ending an iteration
is satisfied. This condition can vary from simply reaching the number of generations
an iteration was supposed to entail, to reaching a specified fitness or objective
function level, to reaching a specified minimum distance level between design
alternatives, that guarantees a diverse population. In some cases the designers may
elect to execute an iteration with only a few generations, but in general it is
anticipated that the GA is supposed to identify significantly improved design
alternatives requiring several generations. However, to guarantee continuous
involvement of the designers, each iteration should be limited to a reasonable length.
Once the condition is satisfied, the set of interesting solutions is (possibly) further
reduced to a display set. Otherwise, new parents are being selected for the GA’s next
generation.

Step 8 – Identify Parents
In this proposed interactive evolutionary design process this selection step closes the
loop of the evolutionary process. Specifically, it determines, based on the fitness of
each population member and/or the designers’ feedback, which solution participates
in the creation of the next generation, and which solution has to leave the pool of
useful solutions.

Step 9 – Identify and Present “Display Set” of Solutions
For problems with a large number of objectives, it is possible that the set of
interesting solutions, e.g. the set of Pareto optimal solutions, is very large and it
becomes infeasible to display all interesting solutions. In such cases a further step of
down-selecting the alternatives to be displayed is needed. Promising approaches are
cluster analysis, displaying a representative alternative that is central with respect to
objective or design variable values, as well as simply selecting a fixed number of
alternatives with highest fitness to be presented to the designers.

Step 10 – Exit with Final Design
Finally the process ends with the designers simply selecting the solution that satisfies
their design requirements best. Naturally, the point at which this step happens is a
function of time constraints the design project is subject to.

3   Implementation Example

To demonstrate the interactive evolutionary design approach proposed here, a
supersonic business jet was chosen as a complex aerospace design problem for
implementation over a simple benchmark problem. The analysis tool used in this
example is a system of Response Surface Equations (see Buonanno [17] for details)
that allows for a rapid fitness evaluation.

Problem Definition
For this supersonic business jet example, 35 design variables were chosen, separated
into five groups as presented in Figure 2. The first group, General, consists of
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variables for the vehicle, some of which could be designated Design Requirements.
The other four groups contain geometric parameters for the wing, fuselage,
empennage, and engine, while the engine group also entails performance parameters
relevant to the design.

A mix of economic, size, and performance parameters were chosen as the eight
objectives to be minimized in this example. Special emphasis is put on noise
generation, since it is anticipated to be a primary concern for a supersonic aircraft.
Hence, for the initial loop the Boom Loudness and, as a counter weight, the
Acquisition Cost are given slightly higher importance of 20%, while all other
objectives are set at 10%. Furthermore, certain noise levels could be prohibitively
large and prevent the design from getting regulatory approval. Hence, the Sideline
and Flyover Noise objectives have to have constraint values imposed on them. In
addition to these constraints, the design has to fulfill certain FAA requirements
regarding take-off and landing distances as well as approach speed. Furthermore, in
order for the design to be physically realizable, the amount of available fuel beyond
what is needed to complete the design mission needs to be positive and include a
certain amount of reserve. Finally, fitness is calculated via a weighted sum of
normalized objective values, penalized by a 20% increase in value whenever at least
one constraint is violated. Note that the best solution is identified as the one with the
lowest fitness. Both, objectives and constraints are tabulated in Figure 3.

Genetic Algorithm
The GA chosen for this example has a population size of 20 and makes use of a real
valued 35-gene representation. New generations are created from an elite pool for the
two individuals with best (lowest) fitness, and proportionate probabilistic selection for
crossover. The crossover algorithm utilizes a strategy with one splice point that is
selected at random within the chromosome. Since the design variables are grouped in
logical categories, this crossover algorithm enables a complete swap of the engine or
fuselage-engine assembly between parents. Parent solutions are being replaced with
offspring. Each member of the new population has a 15% probability for mutation at
ten random genes, sampling a new value from a uniform distribution over the entire
range of design variable values. The GA in this example is used for demonstration
purposes only and therefore employs just a small population. A population size of 50
to 100 seems more appropriate for a more involved version of the proposed approach.

Interactive Process
For this implementation example, the GA was interrupted at 80, 160, 240, 400, 560,
and finally 800 generations to display the population of design alternatives found to
that point in form of pictures with objective values and aircraft configurations. [Due
to the page restriction, only a sample display can be presented here in Figures 2 and 3.
Please refer to www.icoserver.com/~oliver/GECCO2004 for a complete series of
screenshots, or consult [18] for a discussion on the relevance of the display
information itself.] Since in this example the GA’s population size is so small, no
specific concentration on interesting solutions is being performed here, but in order to
allow for a reasonable display size of the aircraft configuration, only the four best
design alternatives, based on fitness and highest diversity in geometrical features, are
being presented in detail on the top of the left-hand side of the display. A screenshot
of the displayed chromosome related information is presented in Figure 2,
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highlighting the individual with the best/lowest fitness, which is also enlarged on the
screen to provide the designers with a more detailed view of the selected
configuration (not displayed here). Presented below the larger image are the design
variable values for the highlighted alternative, and their respective ranges,
representing the actual chromosome of the highlighted alternative.

On the right-hand side of the screen, displayed in Figure 3, the designers can find
the objective and constraint information pertaining to the population and the
highlighted individual. On the top, a table outlines the specific objective values for the
highlighted alternative, as well as the objective preferences and normalization factors
used to generate the fitness values for the current population. Below the table, a spider
graph compares the four presented alternatives on the basis of their normalized
objective values, and to the right four graphs display the objective values for the
entire population, identifying its Pareto frontier. Below the spider chart, a table lists
the constraint parameter values for the highlighted alternative as well as the respective
constraint values. A green font represents constraint parameter values near, orange
font right around, and red font way beyond the constraint value.

Based on this information the designers can make some choices with respect to
objective preferences and/or selection of features-of-interest. To limit the scope of
this example, only the redirection of the search through changes in objective
preferences is implemented here. However, as described before and exemplified later,
designer selection of features-of-interest is an important part of interactive
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evolutionary design and should not be neglected in general. Also, all designer analysis
and feedback is performed by only one individual for this implementation study,
leaving the implementation of multiple designer opinions discussed in Step 3 to future
research.

The first opportunity for the designers to give feedback about the design
alternatives is after 80 generations. From the data displayed it is apparent that all
objectives are being satisfied well except for the Boom Loudness. In an attempt to
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A Broad and Narrow Approach to Interactive Evolutionary Design        891

achieve satisfactory levels for the Boom Loudness in the next iteration, its preference
is increased to 30%, reducing the Acquisition Cost’s importance to 10%. Note that
this feedback/input constitutes a redirection of the search performed by the GA only,
and does not constitute selection of a specific parent, component, or design variable
value.

After 160 generations, the objective values of the best alternative indicate that the
last set of preferences did not emphasize the Boom Loudness and Sideline Noise
enough, since Boom Loudness did not improve and the Sideline Noise got worse.
Consequently, for the next iteration the importance of both is increased to 35% while
all other objectives are reduced to 5%.

After another 80 generations, the resulting population indicates that the last set of
preferences still did not emphasize the Boom Loudness enough, since Boom
Loudness improved only marginally. On the other hand, Sideline Noise did improve
significantly, so that for the next iteration all emphasis can be given to Boom
Loudness. To keep the score even for all other objectives, they are being kept at 5%
with Boom Loudness at 65%.

As the interactive search progresses and the population of designs is more and
more refined, it becomes more and more difficult to find significantly improved
alternatives with only a few generations. Hence, 160 generations were executed for
the next iteration, for which a very good solution is found in this 400th generation with
largely improved values for almost all the objectives. However, in order to test the
ability of this interactive evolutionary design approach to support dramatic shifts in
search direction, Boom Loudness is now made the primary concern for the next
iteration, setting its preference value to 93% while keeping all other objectives at 1%.

After another 160 generations, this preference setting finally produced a supersonic
business jet design with a dramatically reduced sonic boom loudness below 85 dB.
Unfortunately but not surprisingly, this design yields values for the other objectives
that are less desirable, specifically for Sideline Noise. To remedy this shortcoming,
another iteration is executed to find a solution that better balances Boom Loudness
and Sideline Noise, giving the former 80% and the latter 20% preference.
Consequently, all other objectives have a zero preference associated with them.

As anticipated, the new preference setting succeeded in identifying a design that
balances Boom Loudness and Sideline Noise at very low values for both. Obviously,
this gain does not come without a penalty in the other objectives, their values having
significantly increased compared to previous iterations. However, the presented
solutions after 400 and 800 generations, see Figure 4, seem to satisfy the objectives

Fig. 4. Best Solutions after 400 and 800 Generations
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better than the published solution in [17], generated by MATLAB©’s Fmincon
function [19]. So, it can be concluded that none of these objective values are
dramatically out of sync or range and the presented individual could be considered the
final solution. That is, if the information displayed concentrated on the objectives
only. However, at this point the display of the aircraft layout becomes critical and
some comments have to be made about the unusual design configuration of this
solution.

The implementation example for the presented process only considered objective
preferences as an input from the designers. A more elaborate example, should also
consider feedback for the design variables, affecting the selection process in the GA
as much as the search process. This becomes particularly apparent when examining
the configurations of the final solutions after 400 and 800 generations in Figure 4. The
latter has an unusually long wing extending far beyond the vehicle’s fuselage. For all
practical purposes, this configuration would not be able to fly, since it would be
impossible to land, unless it had a very long landing gear, and very difficult to
navigate on the runway. However, the GA cannot be made aware of these issues,
since they are not part of the analysis code employed for fitness evaluation. Hence,
the GA by itself identifies this solution as the best (after 800 generations).

Fortunately, this weakness can be remedied by incorporating this intuitive designer
knowledge into the interactive evolutionary approach via selection of features-of-
interest. For example, after generation 560 the visualization already indicated a drastic
change in geometry, compared to presented alternatives before, e.g. after generation
400. At this point the designers should have indicated that a configuration of this kind
is undesirable by, for example, restricting the sweep and not allowing for the wing
tips to be located that far aback.

Summary

To understand the impact of this interactive evolutionary approach on the generated
design solutions in this implementation example, a comparison of the time series data
for the Fitness, Boom Loudness, Sideline Noise and Acquisition Cost is presented in
Figure 5. Note that new designer input was provided after 80, 160, 240, 400, and 560
generations. As the Fitness graph indicates, the GA is successful in reducing Fitness
during each iteration, while the value-increases are solely attributable to the change in
Fitness composition with every new preference values. The Fitness graph also
illustrates a point made earlier that for large numbers of generations it is increasingly
difficult for the GA to find better solutions.

The graph for the Boom Loudness value in turn illustrates that the GA was not
improving Boom Loudness until its preference was increased to 65% (240+
generations) and only saw significant improvements at a preference of 93% (560+
generations). The Sideline Noise on the other hand saw some very good values
between generation numbers 300 and 500. However, the strong pull for better Boom
Loudness values increased the Sideline Noise values again, a shortcoming that was
only remedied by increasing its preference to 20%. Finally, as indicated in the text,
the Acquisition Cost reached good values early on and continued to improve until
generation 400, but lost ground when significant preference was given to Boom
Loudness and taken away from other objectives.
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4 Conclusion

While the implementation example presented in this paper does not address all
aspects raised in the background discussion of the proposed interactive evolutionary
design approach, it is able to demonstrate that this IEC approach to design is feasible
and it allows the designers to exert very specific control over the optimization
process. Although it is difficult to compare this design approach to traditional
techniques by virtue of their solutions, both aircraft design solutions presented in this
paper achieve better objective values then a previously published solution just by
redirecting the search through changing preferences for objectives that were not
satisfied sufficiently by the alternatives presented.

Albeit the approach presented in this paper pushes interactive evolutionary
computation toward the world of applied design, more work needs to be done before
design practitioners will be able to use an interactive evolutionary design tool.
Specifically, the presented example did not implement a multi-expert design
feedback, although most complex design problems will draw on a multitude of
experts. Hence, it is highly recommended to address this issue in the future.
Furthermore, the implemented response surface equation is an easy and
straightforward solution to the need for analysis, but it makes the design process
susceptible to prediction accuracy. However, a more involved analysis code might
increase the computational time to levels that prohibit collaborative interactive
evolutionary design altogether. This issue needs further study to recommend different
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levels of analysis for different stages of design. Another issue that requires more
research to give practitioners some guidance is related to the amount of information
communicated to the designers. While large populations are needed for the
evolutionary process to be efficient, analyzing more than two dozens designs at the
same time may be infeasible for the average design team. Finally, the end-of-iteration
condition is currently subject to discussions within the IEC community.
Unfortunately, it is not clear at this point whether this condition will also be entirely
problem dependent or general guidelines can be provided.
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